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Abstract. Since the earliest days of soil geography, it has been clear that soils occur in more-or-less clearly mappable bodies,

within which soil forming factors have been fairly homogeneous or in a regular pattern, and between which there is usually

a clear transition in one or more factors. This has been the basis for polygon-based soil mapping: make a concept map from

landscape elements leading to a mental model of the landscape, confirm or modify it with strategically-placed observations, find

the transitions, delineate the soil bodies, and characterise them. By contrast, common methods of Digital Soil Mapping (DSM)5

predict per pixel over a regular grid, from training observations at pedon support. Accuracy assessment of DSM products has

been at this “point” support, ignoring the existence of spatial soil bodies and the relations between pixels. Different approaches

to DSM – datasets, model forms, analyst choices – result in maps with distinctly different patterns of predicted soil properties

or types. Techniques from landscape ecology have been used to characterize spatial patterns of DSM products. The question

remains as to how well these products reproduce the actual soil patterns at a given cartographic scale and categorical level10

of detail. Our approach is to let DSM maps “speak for themselves” to reveal spatial patterns. We do this by grouping pixels,

either (1) by aggregation based on property homogeneity using the supercells algorithm, or (2) by segmentation based

on within-block property pattern similarity, using the GeoPAT suite of computer programs. Segments can be hierarchically

clustered into groups of presumed soil landscape elements. Supercells and segments can be compared to existing soil maps,

other land resource maps, and expert judgement. To the extent that presumed soilscape patterns are reproduced, this is evidence15

that DSM has identified the soil landscape at the chosen scale. Since map users perceive patterns, and most land use decisions

are for areas rather than pixels, we propose that DSM products be evaluated by their patterns, as well as by pointwise evaluation

statistics.
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1 Introduction

Digital Soil Mapping (DSM) is a general term for the creation of digital maps of soil classes or properties by fitting geostatistical20

or machine-learning models between observations of soil classes or properties at known locations and a set of environmental

covariates representing soil-forming factors. Since its formal introduction by McBratney et al. (2003) it has been extensively

applied worldwide at a wide range of scales and target classes and properties, see for examples reviews by Mulder et al. (2023),

Arrouays et al. (2020) and Nenkam et al. (2024).

DSM products are routinely and (almost) exclusively evaluated by point-based evaluation statistics, and these are almost25

never based on probability or even representative observations (Piikki et al., 2021). Point-based evaluation ignores the existence

of soil bodies that form a pattern over the landscape. Maps with distinctly different patterns of predicted soil properties or

types can result from different approaches to DSM, see for example Rossiter et al. (2022) and Poggio et al. (2010). We propose

to also evaluate DSM products by their patterns, as revealed by segmentation of the gridded maps into areas with more or

less homogeneous internal composition of soil properties. As Vaysse and Lagacherie (2017) aptly state, “DSM products are30

simplified representations of more complex and partially unknown patterns of soil variations” (emphasis added).

Soil geographers conceive of the soilscape as a continuum in 3D, with the vertical dimension (soil profile) defining a pedon

(Soil Survey Staff, 1999, p. 11). The pedon has a horizontal dimension sufficient to show the local variability of horizons and

properties, e.g., cyclic or irregular horizons. Pedons are connected laterally into relatively homogeneous polypedons (Johnson,

1963), within which the soil-forming factors and hence the pedons are within some defined limits. The transition zones between35

polypedons are marked as borders between natural soil bodies (according to those limits). Figure 1 shows a typical conceptual

model from a detailed soil survey in the USA, design scale 1:12 000 (minimum mappable area 0.576 ha). The transitions

between polypedons in this scene are due to parent material, topography, and hydrology.

Together, these make up the soilscape, i.e., distribution of polypedons on the landscape. These form a pattern. The classic

example is the catena of Milne: “a sequence of distinct but pedogenetically-related soils that are consistently located on specific40

facets down a slope, giving recurrent topographically associated soil pattern” (Borden et al., 2020), We would hope that a map

of a catena would clearly show these elements and their transitions.

In traditional expert-based soil class mapping (Hudson, 1992) the landscape is segmented according to the mapper’s con-

ceptual model of soil-landscape relations, and by examination of external clues, notably relief, vegetation, and land use, and

by augering or full profile examination. DSM replaces the conceptual model with correlative relations with digital coverages45

meant to represent, at least in part, one or more of the seven predictive SCORPAN factors of McBratney et al. (2003). There-

fore, there is no longer an explicit relation with the soil landscape, but it is hoped that the implicit correlative relations can find

these.

The concept of areas with distinct patterns of contrasting soils goes back to the “soilscape fabrics” from the soilscape

analysis of Hole (1978) and the “soil combinations” of Fridland (1974). At increasingly detailed scales and with increasingly50

fine distinctions in the definition of soil bodies, increasingly finer patterns are revealed. Conversely, at coarser scales, patterns

are based on less precise definitions of distinct soil bodies. As Fridland puts it, “Soil combinations consist of elementary soil
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Figure 1. Conceptual block diagram, Otsego County NY (USA)

.

Source: https://www.nrcs.usda.gov/publications/NY-2010-09-28-14.png

areas which are genetically linked to various degrees and which produce a definite pattern in the soil mantle . . . Multiple spatial

repetition of a certain soil combination or several soil combinations alternating in a definite order creates various forms of

structures of the soil mantle.” An example of a fine-scale soil pattern is the pit and mound topography found on a hillslope in55

southwest Poland by Pawlik et al. (2024).

In traditional soil mapping, these areas with sufficiently homogeneous soils or patterns of them at a given cartographic

scale are the units that are delineated on the map. However, as Fridland explains: “The structure of the soil mantle and soil

combinations are in their essence not cartographic but genetic-geographic concepts, even though they constitute a basis for

elaborating cartographic units.” This implies that the resulting soil properties distributed vertically in the profile, as products60

of pedogenesis, can be the basis for map units. Therefore, if at each pixel DSM accurately predicts a sufficiently rich set of

properties over the soil profile, these should be grouped on the DSM map as recognisable cartographic units.

Within a mappable soilscape segment, there will of course be variability, ranging from some smaller deviations from a

central concept (typical soilscape position and pedon), to a mixture of contrasting pedons, in National Resource Conservation

Service (NRCS) soil survey terms a complex. Since DSM predicts per pixel, it may be possible to resolve these complexes65

into their components at the pixel scale, if that is fine enough to match the pattern within the complex. If this is the case, our

evaluation of the DSM product should identify this.
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Digital Soil Mapping (DSM) predicts at each pixel of a regular, more or less fine grid, either as the centre point or a block

average of the area covered by the pixel. DSM typically predicts multiple soil properties at a set of standard depth slices.

Although some DSM methods use covariates in areas around a pixel, they do not enforce any relation between adjacent pixels.70

These relations are particularly important in soil hydrology models. Thus, the question is to what degree the pixels of DSM

products at various resolutions can be aggregated into groups to realistically represent a soil landscape, whether the soilscape

segment is relatively homogeneous in its properties or represents a complex. Intuitively, if the soil forming factors responsible

for a polypedon are also spatially associated in the covariates used in DSM, the relations between pixels should occur as a

byproduct of per-pixel DSM. More abrupt transitions in the covariates should be reflected in the predictions. The pattern of the75

pixels should therefore represent the soil landscape. The question is, does the DSM product show these relations?

One way to assess the success of DSM in reproducing a soil landscape is to aggregate the individual predictions from pixels

into more or less homogeneous supercells, following methods used in image processing, where these are called superpixels

(Nowosad and Stepinski, 2022). This can be based on single properties and depth layers, or, more usefully, on the multivariate

collection of DSM-predicted properties at a pixel. We explain the aggregation algorithm in §2.1.80

At coarser scales, homogeneity of properties within some larger area may not be possible or even desirable. This has led to

the concept of landscape segments, defined by the co-occurrence pattern, referred to as a signature, of a group of contrasting

pixels of a class map, within a pre-defined size of the segment. Segmentation was developed by geographers to find similar

land cover patterns for ecoregionalization (Nowosad and Stepinski, 2018). In that case, the pixels represent land cover classes.

The aim is not homogeneity of land cover, rather, homogeneity of the land cover pattern within some analyst-defined area. The85

relation to a soil cover pattern is obvious, and corresponds well to concepts such as the catena or soil associations. Depending

on the scale of the analysis and the inherent scale of the soil landscape, we may expect to see homogeneity at the level of

consociation (e.g., soil series), or a heterogeneous pattern of contrasting soils at the level of soil association, or a fine-scale

pattern of contrasting soils, the complex (Soil Science Division Staff, 2017).

Segmentation requires that DSM maps of continuous predictions be classified, i.e., sliced according to analyst-defined class90

limits. The classes can correspond to meaningful classes for soil management, or can be based on laboratory precision. They

can be wider (more general) or narrower, roughly corresponding to cartographic detail. Clearly, the classification can greatly

influence segmentation. This is also the case when segmenting land cover classes. We explain the segmentation algorithm in

§2.2.

Once a segmentation has been performed, the segments can be clustered according to their similarity of internal pattern, i.e.,95

the signature of the segment. We explain the clustering algorithm in §2.3.

Thus, the objective of this study is present methods to create presumed soil landscape units from DSM products, by both

aggregation and segmentation, and then to cluster the segments to identify similar soil landscape units within the map. We first

describe the methods and then apply them to three case studies corresponding to different DSM projects at various resolutions

and extents. Finally, we discuss how these methods can be used in routine evaluation of DSM products.100
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2 Methods

We contrast two approaches to letting the map “speak for itself”: aggregation based on homogeneity of properties (§2.1), and

segmentation based on patterns of classified properties within segments (§2.2).

2.1 Aggregation

Aggregnation seeks to find contiguous groups of pixels with relatively homogeneous property values, either single or multivari-105

ate. This is implemented by the supercells R package (Nowosad, 2025), which uses the Simple Linear Iterative Clustering

(SLIC) image-processing algorithm (Nowosad and Stepinski, 2022), with the improvement that an appropriate data distance

measure and function for cluster averaging can be defined. For multivariate aggregation there must be a distance measure

defined in in multivariate space. A common choice, used here, is the Jensen-Shannon divergence, (Lin, 1991). which quan-

tifies the distance between two histograms by the deviation between the Shannon entropy of the combination of two uni- or110

multivariate histograms and the mean of their individual entropies.

The supercells function is controlled by several parameters that have a large effect on the results. First and most impor-

tant is compactness, which trades off internal homogeneity of the supercells with their geometric compactness. The absolute

compactness value depends on the range of input pixel values and the selected distance measure. A large value prioritizes spatial

distances between pixels and superpixel centres (more geometric compactness), whereas a smaller value prioritizes distances115

in feature space (more property homogeneity). Second is the approximate number of supercells, k. This should correspond to

the number of landscape segments expected in the study area, at the design scale of the corresponding polygon map. Third is

the minimum supercell size, minarea. This should correspond to a minimum mappable area or a minimum size needed for an

application, e.g., land management or stratified sampling.

The quality of the aggregation can be evaluated by the standard deviation or coefficient of variability of each property in the120

supercell. As supercells decrease in size, these measures will necessarily have smaller values.

2.2 Segmentation

Segmentation seeks to find contiguous groups of blocks of grid cells with similar internal patterns of pixels, which represent

soil classes or properties, these either univariate or multivariate. Patterns are computed within blocks of at least 10 x 10 pixels,

as specified by the analyst. Unlike supercells, segments must have rectilinear borders.125

Segmentation proceeds as follows. The first step is to select classified soil properties and their depth slices to represent

soil individuals at each pixel. The second step is to find the co-occurrence pattern of the pixels within pre-defined grid cells.

The third step is to aggregate grid cells with similar internal spatial patterns into larger units, sufficiently distinct from neigh-

bouring units in terms of their internal spatial patterns. Finally, the result is evaluated by its segmentation statistics, namely,

inhomogeneity within the segment and isolation of the segment from its neighbours. The segmentation can be inspected by130

expert judgement, perhaps comparing with conventional soil maps, to evaluate how well it represents the soil landscape at the

selected cartographic scale.
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Figure 2. GeoPAT segmentation workflow. Source: (Netzel et al., 2018)

For segmentation, we use the GeoPAT suite of standalone Unix programs (Jasiewicz et al., 2015). These are invoked in

sequence, via the R system function, to obtain a segmentation and an evaluation of its quality. GeoPAT has been used

successfully to segment categorical rasters such as land cover maps (Jasiewicz et al., 2018) and for global ecoregionalization135

based on multiple environmental factors (Nowosad and Stepinski, 2018). Figure (2) shows the segmentation workflow using

GeoPAT.

Several parameters control the signature computation of the gpat_gridhis program. Two related parameters are size

and motifel. The first is the size of the output grid cell of the segmented map. This must be at least 10 x 10 pixels of

the source DSM. Thus, the segmentation is of similar patterns within an output grid cell and its neighbours. This dictates the140

largest equivalent map scale at which soilscape patterns (groups of output grid cells) can be discerned. The second is the “Motif

Element”, referred to as the motifel, defined as the size of the window within which the pattern will be computed. This must be

at least as large as the size, but could be larger to account for edge effects in the pattern. Also important are two thresholds

for joining grid cells into segments: lthreshold to control the sizes of segments and uthreshold to prevent the growth

of inhomogeneous segments.145

Another important option for gpat_gridhis is the signature type within each grid cell, default cooc, “Spatial co-

occurrence of categories”. This characterizes signatures with a “colour” co-occurrence histogram, a variant of the Gray-Level

Co-occurrence Matrix (GLCM) used to characterise texture in greyscale images (Haralick et al., 1973; Hall-Beyer, 2017). In
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GeoPAT, discrete greyscale numbers, as in GLCM, are replaced by cell classes. A separation of one pixel is used to calculate

the co-occurrence histogram, which then represents the spatial pattern within a grid cell. Related to this is the normalization150

type, default pdf “probability distribution function”, which is recommended for the cooc signature type. This harmonizes the

signatures from different motifels.

Grid creation requires the selection of grid sizes. To evaluate DSM products we select these based on their correspondence

to nominal map scales, using the Vink definition of a minimum legible delineation (MLD), i.e., the smallest area that can be

displayed on a printed map, of 0.25 cm2 at map scale, i.e., a grid cell side of 0.5 cm (Vink, 1963). To determine the Minimum155

Legible Area (MLA) and corresponding side on the ground, these are multiplied by the scale number (denominator of the

scale ratio). For example, at 1:200 000 the MLA is 100 ha, with a side of 1 km. Signature computation requires at least 100

pixels from the DSM map in order to produce a reliable signature, i.e., the minimum edge of the segmentation grid (the “shift”

parameter) must be 10 times the original DSM resolution. For example, a 25 x 25 m DSM product can only be segmented

at 250 x 250 m or coarser (6.25 ha), corresponding to the MLA of a 1:50 000 scale map. To match a 1:200 000 map (MLA160

100 ha), the 25 x 25 m pixel must be aggregated 40 times per side, i.e., 1 km x 1 km.

The segmentation phase in GeoPAT is implemented by the gpat_segment program. This groups grid cells based on their

motifel signatures computed by gpat_gridhis. Segments have a “brick” topology, in which square grid cells are arranged

in alternating layers with each layer is shifted by one-half the size of the motifel. Thus, the analysed area (i.e., the MLA) is

four times the motifel size.165

Segment homogeneity is characterised by their normalised Shannon entropy H , defined as:

H =−
ny∑

i=1

pi lognz
pi (1)

where pi is the proportion of the segment in class i, nz is the number of possible classes, and these are summed over all

ny pixels in the grid cell. Using the logarithm to base nz normalizes the entropy to the unit range regardless of the number

of possible classes, so that 0 indicates complete homogeneity, i.e., one class for the entire segment. By contrast, 1 indicates170

maximum heterogeneity, i.e., all classes are equally represented in the segment. This only depends on class composition, not

on pattern, even though the latter is the basis for segmentation.

Segmentation quality is measured with the gpat_segquality program. This produces two quality measures: (1) the

inhomogeneity within each segment, and (2) the isolation of each segment from its neighbours. Inhomogeneity measures the

degree of mutual dissimilarity between a segment’s motifels, on a [0 . . .1] scale, where smaller values are better, i.e., more175

homogeneous, less internally diverse. Isolation is the average dissimilarity between a segment and its immediate neighbours,

on a [0 . . .1] scale, where larger values are better, i.e., more isolated. These measures depend on the pattern, not just the class

composition, of segments.
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Figure 3. GeoPAT clustering workflow. Source: (Netzel et al., 2018)

2.3 Clustering

Once segments are created, their internal patterns can be characterised by the same signature methods used to perform the seg-180

mentation. Figure (3) shows the workflow for clustering in GeoPAT. The gpat_polygons program computes the signature

within each segment. The distance between these signatures is then computed by the gpat_distmtx program. Here we used

the default Jensen-Shannon divergence. The segments can then be clustered on the basis of their distance measures by many

clustering algorithms. Here we use hierarchical clustering, as implemented by the R function hclust using Ward’s linkage

with squared distances to produce a dendrogram. This is cut at an analyst-determined number of classes to represent groups of185

internal homogeneity of segments. There are other choices in both the distance measurement and clustering linkage method.

We chose Jensen-Shannon divergence because it is easily interpretable on a [0 . . .1] scale and is stable. We chose Ward’s with

squared distances to minimize within-cluster variance.

3 Case study 1 – BIS-4D (Netherlands)

BIS-4D (“Bodeninformatiesysteem 4-Dimensional”) (Helfenstein et al., 2024) is a high-resolution (25 m horizontal, six depth190

slices vertical) soil modelling and mapping platform for the Netherlands. The 3D are geographic space and depth along the

soil profile. The fourth dimension is time, applied only to soil organic matter (SOM), which we ignore here by using only

the most recent SOM map. Predicted properties are clay, silt, sand and SOM concentrations %, bulk density g cm−3, pH

in KCl, total N mg kg−1, oxalate-extractable P mmol kg−1, and cation exchange capacity mmol(c) kg−1. Depth slices are

the GlobalSoilMap standard 0–5, 5–15, 15–30, 30–60, 60–100 and 100-200 cm (Science Committee, 2015). Each map is195
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Figure 4. Semi-detailed soil map of the Netherlands, design scale 1:50 000 (part).

Source and detailed legend: Ministerie van Volkshuisvesting en Ruimtelijke Ordening (2024).

General legend: Dark and medium green: river clays with different clay concentrations; Light green: glacial depression sediments; Brown,

pink: push moraines with varying sand and gravel sizes; Yellow: wind-blown sands; Purple: peat.

accompanied by uncertainties (quantiles and 90% prediction interval). We did not use these in this analysis, only the mean

predictions. Coverages in the GeoTIFF format are free to download and use, and can be directly read into the terra R

package (Hijmans et al., 2025).

BIS-4D is highly accurate at point support, as assessed by cross-validation, due to a very dense sampling network and the

country-specific covariates used in the DSM. Visual inspection of layers agrees well with traditional 1:50 000 scale polygon200

soil maps (Steur and Heijink, 1980; Brouwer et al., 2021) and expert views of the soil landscape.

We selected a 40 x 40 km test area (Figure 4), because of its diverse soil-forming environments, including river clays of

various ages and compositions, sandy push moraines, organic soils in glacial depressions, and coversands.
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3.1 Aggregation

The supercells algorithm can work directly on raster stacks of the terra package. All 54 maps (7 properties, 6 layers)205

were combined in a SpatRaster raster stack. Since the values and ranges are not compatible, the Jensen-Shannon divergence

was used to evaluate the distance in feature space between pixels and supercell centres. In this landscape there are non-compact

(extended) features parallel to the river, in the fen areas and along the push moraines, so after some experimentation a low

compactness value (0.2) was selected. We selected a minimum mappable area of 10 ha, equivalent to the 1:50 000 design scale

of the Dutch conventional soil map, using the Cornell definition of 0.4 cm2 minimum legible area on the map (Forbes et al.,210

1982). Thus we set the minarea was to 1 600 25 m x 25 m pixels.

Figure 5 shows the supercells (outlined in black) with several properties as a background. Note that the supercells in all

maps are the same, but of course the mean values of each property within the supercells are different. The median size of the

270 supercells was 433 ha, ranging from 104 to 5 044 ha, with a strongly right-skewed distribution. Aggregation clearly shows

the differences between soil bodies, with some properties being more prominent in certain supercells.215

To evaluate the quality of the aggregation, we computed the standard deviation of each property within each supercell (Figure

6). These are quite low for clay and SOM, and for pH with some small but notable exceptions. Bulk density is less successfully

aggregated. The exceptions are where that property is not important in the computation of Jensen-Shannon divergence to that

supercell.

3.2 Segmentation220

Since gpat_gridhis requires class maps, we classified the soil property maps as follows: bulk density by 0.1 g cm−3, CEC

by 25 mmol(c) kg−1, clay, silt, sand concentrations by 5%, Pox by 4 mmol kg−1, pH by 0.1 units, SOM concentration by 4%,

and total N by 1000 mg kg−1.

The minimum grid size for segmentation (10 x 10 pixels) is 250 x 250 m (62.5 ha), corresponding to a 1:158 000 scale map,

as explained in §2.2. Segmentation at this resolution is expected to more closely match the 1:200 000 generalised soil map225

(Haans, 1965) than the 1:50 000 semi-detailed map shown in Figure 3.

3.2.1 Univariate segmentation of individual maps

To examine the effect of grid size, we segmented all properties at all depths, individually, at the minimum possible grid cell

size, i.e., 10× 10 and at several multiples: 40× 40 (1 000 ha) and 80× 80 (4 000 ha), corresponding to nominal map scales

1:400 000 and 1:800 000, respectively.230

The finest segmentation produced 4 393 (pH 100–200 cm) to 675 (Pox 100–200 cm), median 2 678 segments, average area

0.597 km2. Comparing this to the single grid cell at resolution, 0.625 km2, we see that many segments were of one or two grid

cells. The pattern was mostly very fine, with a few large segments for most single properties.

Segmentation at 1:400 000 equivalent scale produced 231 (sand 0–15 cm) to 41 (SOM 15–30 cm), median 181 segments,

average area 8.84 km2. Compared to the single grid cell at resolution, i.e., 1 km2, there was significant grouping. Segmenta-235
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Figure 5. Results for selected properties of aggregation by supercells algorithm using all properties and layers

tion at 1:800 000 equivalent scale produced 66 (sand 0–15 cm) to 12 (Pox 60–100 cm), median 47 segments, average area

34.04 km2. Again, compared to the single grid cell at resolution, i.e., 4 km2, there was significant grouping.

3.2.2 Multivariate segmentation of individual properties, all depth slices

We then performed a multivariate segmentation using all depth slices of single properties. By default, GeoPAT normalizes each

layer and by default weights them equally. In this mode, a motifel must meet the threshold conditions for all input layers to be240

joined to a segment. In this way the segmentation is meaningful for each layer. Because of the different spatial structures of

the properties at each depth slice, it was expected that the segmentation would be finer at each scale than for individual depth

slices, i.e., it would be more difficult to merge grid cells.

The finest segmentation using all depth slices of a single property produced 3 316 (pH) to 168 (SOM) segments, median 1 873

segments, average area 0.854 km2. Segmentation at 1:400 000 equivalent scale produced 190 (sand) to 13 (SOM) segments,245

median 127 segments, average area 12.59 km2. Segmentation at 1:800 000 equivalent scale produced 55 (sand) to 6 (SOM)
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Figure 6. Standard deviations for selected properties of aggregation by supercells algorithm using all properties and layers

segments, median 36 segments, average area 44.44 km2. Contrary to our expectations, the median number of segments were

all smaller than those for the corresponding property’s single depth slice segmentations.

Figure 7 shows the segment boundaries for this multivariate segmentation by bulk density over the whole profile, at the three

resolutions overlaid on the Dutch 1:50 000 soil survey polygons. It is clear that the 1:800 000 segmentation misses important250

differences and that the 1:100 000 segmentation finds quite small areas, mostly just one grid cell, within soil bodies. The

1:400 000 segmentation (i.e., shift size 40, 1 km2) grid cells) matches well with many soil map boundaries.

Figure 8 shows the success of the segmentation based on bulk density over the whole profile at the 1:400 000 design scale:

inhomogeneity of each segment and isolation from its neighbours. For example, the pixels in the large segment in the top-

centre are quite similar in their bulk density profiles, but this segment is only moderately different from its neighbours. This255

shows the relative homogeneity of the bulk density profiles of the central Gelderse Vallei (Gelderland Valley) in the vicinity of

Renswoude and Scherpenzeel. Note that this area also has large segments based on all properties and depth slices, as seen in

Figure 5.
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Figure 7. Segmentation based on bulk density over the whole profile (red lines), overlaid on soil map polygons (grey lines). Design scales

left to right: 1:100 000, 1:400 000, 1:800 000

.

Figure 8. Evaluation of segmentation based on bulk density over the whole profile at the 1:400 000 design scale

.

As the segmentation becomes coarser the inhomogeneity and isolation both decrease, i.e., segments are internally more

consistent in their patterns, and less isolated from their neighbours. For example, median inhomogeneity values from the260

segmentation based on whole-profile bulk density (1 266, 96, 28 segments) decreased from 0.108, 0.086, to 0.076. In parallel,

median isolation values decreased from 0.288, 0.211, to 0.178.

3.2.3 Multivariate segmentation with selected properties and depth slices

Another segmentation is obtained by selecting properties and depth slices to represent the profile. Using all 56 layers results in

an impractical Jensen-Shannon divergence, hence we selected key properties at key depths: pH, clay, silt, SOM 0-5 cm, clay,265

bulk density 15-30 cm, CEC 30-60 cm, sand, SOM 100-200. Figure 9 shows the segment boundaries from this segmentation at

the 1:400 000 design scale, overlaid on several single soil properties and depth slices. Note that the segment boundaries are the

same for all maps. This segmentation should best group soils considered holistically, not per-property. Many of the segments
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Figure 9. Segmentation based on selected properties and depth slices, overlaid on DSM of selected soil properties, 1:400 000 design scale.

Legends not shown. Scale is from dark red (low values of the property) to dark green (high values). Top-left map includes segment numbers

.

correspond to landscape features shown in the conventional soil map of Figure 4, although constrained to the rectilinear shape

and minimum grid cell size.270

3.2.4 Scaling of segmentation

The segmentation method scales well. The land area of the Netherlands (≈ 33 240 km2) was segmented using all depth slices

for several properties. At the nominal 1:400 000 design scale, this resulted in 2 535 (pH) and 1 547 (bulk density) segments; at

1:800 000 design scale 649 (pH) and 371 (bulk density). Figure 10 shows the segmentation by pH of the entire Netherlands at

these two scales. For this extent the coarsest segmentation seems most useful for understanding the country-wide soil pattern.275
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Figure 10. Segmentation by whole-profile pH of the Netherlands at 1:400 000 (left) and 1:800 000 (right) nominal scales, overlaid on the

pH 15–30 cm DSM product

.

3.2.5 Segmentation parameters

Segmentation is greatly affected by the two thresholds. For example, segmenting the test area using all depth slices for clay

using the default lower and upper thresholds (0.1 and 0.3, respectively) results in 1 932 (1:100 000) and 148 (1:400 000)

segments, whereas using more liberal (easier segmentation) thresholds 0.3 and 0.8 the number of segments is reduced to 285

and 18. In effect, the more liberal segmentation at a finer scale is similar to the more conservative one at a coarser scale.280

Figure 11 shows the multivariate segmentation of the test area on the basis of clay concentration at all depth slices at nominal

1:400 000 scale with default thresholds, and the same for the 1:100 000 scale but with liberal thresholds. These maps are

comparable.

3.3 Clustering

Hierarchical clustering was applied to the segments of Figure 9, i.e., based on selected properties and depth slices, to represent285

the profile. The resulting dendrogram is shown in Figure 12. Note the large separation in internal patterns between the two

top-level branches (height 6). These represent the river clay landscape, Gelderse Vallei depression, and lower terraces (right

branch, clusters 4–7) and the sandy uplands (left, clusters 1–3). At the second level for the right branch (height 3.5) the large

separation is between the Gelderse Vallei depression and terraces (clusters 4 and 5) and the river clays (clusters 6–7). At the

third level for the rightmost branch is the separation between the actively flooded zones (cluster 7) and the somewhat higher290

zones (cluster 6). While not a perfect separation, the clustering does separate the principal soil landscape components.

The seven generalised clusters identified in the dendrogram are shown on the landscape in Figure 13. These group similar

segments well and could serve as landscape management units. For example, cluster 4 groups the mostly homogeneous seg-
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Figure 11. Segmentation by whole-profile clay at 1:400 000 with default thresholds (left) and 1:100 000 (right) with liberal thresholds,

overlaid on the clay 0–5 cm DSM product

.

ments dominated by low pH, clay, SOM, CEC, high sand, and medium silt. Cluster 7 groups the heterogeneous segments along

the rivers and large brooks.295

3.4 Evaluation

The BIS-4D product can “speak for itself” quite well, to reveal both compact units of homogeneous soils and segments with

similar heterogeneous patterns of soil classes. Aggregation based on properties and depths selected to represent the results of

the principal soil forming factors delineates patches (Figures 5 and 9) that closely correspond to polygons of the 1:50 000 design

scale conventional soil map with design scale 1:50 000 (Figure 4), generalized to about 1:158 000 design scale, although with300

some variations in form. Segmentation was most successful with grid cells of 1 000 ha, corresponding to nominal map scale

1:400 000. This grouped patterns of pixels with different internal patterns of classes. Hierarchical clustering of these segments

found groups of similar patterns within the map. These represent separate segments of the same landscape component. These

results increase confidence in the BIS-4D DSM product. This is perhaps a best case, due to the extremely high quality of the

source data (training points and covariates), the conventional map which can be used for comparison with aggregation and305

segmentation, and sophisticated modelling approach specific to the Netherlands.

4 Case study 2 – SoilGrids v2.0 (Global)

At the other extreme from the country-specific DSM exercise based on a large quality-controlled and spatially complete training

set (§3) is a global DSM exercise based on a heterogeneous and spatially-unbalanced training points, using only covariates with

global coverage. For this case we selected SoilGrids v2.0 (Poggio et al., 2021) from ISRIC-World Soil Information. This is a310
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Figure 12. Hierarchical clustering of the segments shown in Figure 9

.

set of predictive maps of soil properties for the entire globe at 250 m nominal spatial resolution. Aggregations to 1 km and 5 km

resolutions are provided for modelling at coarser scales. It is a globally-consistent product that uses all available point data

from the World Soil Information Service (WoSIS) database (Batjes et al., 2024), also from ISRIC-World Soil Information, and

covariates with global coverage. Political boundaries are nowhere visible, except where one or more covariates match these.

SoilGrids provides both predictions and their uncertainty, via quantile random forest machine-learning models. It closely315

follows the GlobalSoilMap specifications of properties and depth slices (Science Committee, 2015). It also predicts the derived

property of SOC stocks from 0-30 cm, in T ha−1, computed from SOC concentration and bulk density. We chose to evaluate

this layer, in order to compare it with the FAO’s Global Soil Organic Carbon Map (GSOCmap) project (FAO, 2018).

We selected a transnational study area with corners (-109.99, 27.86) E and (-100.03, 35.64) N. This covers most of Chihuahua

and Coahuila and part of Sonora States (MX) and portions of Texas and New Mexico States (USA). Figure 14 shows this area,320
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Figure 13. Generalised clusters of the segmentation of Figure 9, based on slicing the clustering dendrogram shown in Figure 12 for seven

general clusters.

with the SOC stocks over the 0–30 cm depth slice. The higher stocks are in mountains and wetlands along the Rio Grande, the

lower in high deserts.

Individual 2× 2◦ tiles of the 250 m product were downloaded in the GeoTIFF format from the interactive SoilGrids site

(ISRIC-World Soil Information, 2024b), imported into R with the terra package, mosaicked, projected from the original

geographic coordinates to a local Albers Equal Area projection, and trimmed to 3 270 x 3 610 6.25 km2 pixels, covering325

737 793.8 km2. The global map of the 1 km product was downloaded in the GeoTIFF format from the ISRIC WebDAV

repository (ISRIC-World Soil Information, 2024a), projected from the original Homolosine coordinate reference system to the

same local Albers Equal Area projection, and trimmed to 900 x 900 1 km2 pixels, covering 810 000 km2.

Predicted SOC stocks per pixel ranged from 0 to 83, median 28 T ha−1 for the 250 m product, and 7 to 76, median 29 28

T ha−1 for the 1 km product, showing the smoothing effect of upscaling.330
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Figure 14. SoilGrids v2.0; SOC stock 0-30 cm, T ha−1.

4.1 Aggregation

We applied the supercells algorithm to the SOC stocks 250 m resolution layer. To limit processing time and memory

requirements, we selected a small test area of 80 x 80 km, i.e., 640 000 ha, centred on (-105 E, 32 N) at the Texas (N) / New

Mexico (S) border, near Dell City NM (Figure 15). The centre pivot irrigated fields at the centre-left are ≈ 800× 800 m and

should thus be resolvable on the SoilGrids map. This area includes a wide range of the SOC stocks (Figure 16 left), with high335

values in the Guadalupe Mountains to the east and very low values in the salt flats in the centre of the area.

After some experimentation, a medium value (0.5) for compactness was selected. We did not set a minimum mappable area

mineara, rather a number of proposed supercells k. A choice of ≈ 400 supercells corresponds to an average area of 1 600 ha,

corresponding to 1 cm2 on a 1:400 000 printed map. This is much larger than the area of single centre-pivot irrigated fields, so

we did not expect these to be individually resolved.340
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Figure 16 (right) shows the computed supercells. Median size of the 412 supercells was 1 388 ha, ranging from 431 to

5 462 ha, with a strongly right-skewed distribution. This aggregation clearly groups the pixels with similar SOC concentra-

tions. However, the shapes do not seem to correspond to natural landscape boundaries. We attempted other combinations of

compactness and supercell numbers, with poorer results.

The quality of the aggregation can be measured by the standard deviation of the property within each supercell (Figure 17).345

These ranged from 0.34 to 6.08, median 1.18 T ha−1, with corresponding coefficients of variation from 1.36 to 26.61, median

4.39%. The highest heterogeneity was in the pivot irrigation area, where the minimum supercell size forced pixels with a wide

range of values together.

4.2 Segmentation

Segmentation was applied to the SOC stock map of the full study area, for both resolution SoilGrids DSM products. Since350

gpat_gridhis requires class maps, SOC stocks were classified in 19 (250 m) and 18 (1 km) equal intervals of 4 T ha−1,

with from 31 to 1’956 813 (250 m) and 14 to 128 549 (1 km) pixels per class. The minimum grid resolution for the 250 m

product is here 2.5×2.5 km. The map was segmented at this resolution, and also four coarser resolutions: 5×5 km, 10×10 km,

21
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Figure 16. SoilGrids v2.0 SOC stock (left) and its aggregation into supercells (right); SOC stock 0-30 cm, T ha−1

Figure 17. Standard deviation within supercells; SOC stock 0-30 cm, T ha−1
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Figure 18. Segmentation of 250 m resolution SoilGrids map (part) at 1:1M nominal resolutions

.

20×20 km, and 40×40 km, corresponding to map scales 1:1M, 1:2M, 1:4M, 1:8M, and 1:16M, respectively. These produced

7 600, 1 905, 491, 127, and 35 segments from the 250 m resolution map, respectively. Figure 18 shows the segmentation at the355

finest scale. The level of detail is apparent, but many segments seem to be of a single class, with no internal pattern. Broader

landscape patterns are obscured by this level of detail.

From the 1 km resolution SoilGrids map the three coarsest resolutions resulted in 669, 165, and 43 segments. Figure 19 shows

these three segmentations. As resolution decreases, broader landscape patterns are increasingly aparent. All segmentations

seem useful at their respective design scales.360

For the 250 m SoilGrids segmentation, median standard deviation increased from 2.35, 3.08, 3.94, 4.62, to 6.15 T ha−1,

while the median normalized Shannon entropy increased from 0.311, 0.369, 0.433, 0.472, to 0.580, for the 1:1M, 1:2M, 1:4M,

1:8M, and 1:16M scales, respectively. Entropy and standard deviation increase with segment size, as expected. The comparable

values for the 1 km SoilGrids segmentation are median standard deviation 3.37, 4.29, and 6.19 T ha−1, and median normalized
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Figure 19. Segmentation of 1 km resolution SoilGrids map (part) at (left to right) 1:4M, 1:8M, and 1:16M nominal resolutions

.

Figure 20. Normalized Shannon Entropy of segments of the SoilGrids v.2 1 km map (part) at 1:16M nominal resolution.

Shannon entropy 0.417, 0.481 and 0.584 for the 1:4M, 1:8M, and 1:16M scales, respectively, similar to those from the 250 m365

segmentation.

Figure 20 shows the entropy for each segment of the 1:16M nominal resolution map from the 250 m product. This is

a measure of the internal class homogeneity of each segment, although not the spatial pattern of the classes. The highest

entropies are found in the segments with mixed high and low terrain, shown as contrasting purple and light blue colours.

4.3 Clustering370

Figure 21 (left) shows the 39 segments signatures from the 1 km product, using motifel size 40 cells, and Figure 21 (right)

shows the assignment to seven generalised clusters. Figure 22 shows the dendrogram for the clustering of the 39 segment

signatures.
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Figure 21. Left: Segmentation of SoilGrids v2.0 1 km SOC stocks (T ha−1), motifel size 40 cells; Right: Assignment of segments to seven

generalised clusters

Figure 22. Dendrogram of segment signatures, SoilGrids v2.0 1 km, motifel size 40 cells.
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Figure 23. Jensen-Shannon divergence from Segment 1

The co-occurrence pattern of classes is similar within each general cluster. The clusters should group similar soil landscapes,

at least with respect to the SOC concentration. For example, cluster 1 groups mountainous terrain with high SOC interspersed375

with basins with medium SOC in an intricate pattern.

Figure 23 shows the Jensen-Shannon divergence with the first segment, which necessarily has no divergence. These range

from 0.14 (segment 30, in the same cluster 1 as the target segment, although on a different first branch at height 0.45) to

0.84 (segment 4, in widely-separated cluster 3, different at branch height 1.45). This can be used to find the soil patterns that

are most similar to any segment, independently of cluster membership. The distance does not directly correspond to cluster380

distance in the dendrogram when linkages other than single are used, as in this case, Ward’s D2.

4.4 Evaluation

Aggregation was able to form compact groups of pixels with similar SOC stocks, which could be useful for, e.g., stratified

sampling. However the polygons did not seem to correspond well with landscape units. Segmentation was more successful.

At several increasingly-general scales it grouped distinctive patterns of SOC stocks, corresponding to large landscape units.385

Clustering was then able to identify general groups of landscape units, and the Jensen-Shannon divergence identified the

segments most similar to a selected segment.
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5 Case study 3 – SOLUS100 (USA)

The third case study is intermediate to the first two. Like the BIS-4D study it is of one country and with training points from

one source, but (1) it covers a much wider area and so can’t use covariates that are only available for part of the area, and (2)390

the product is based on numerous traditional soil surveys of varying age and quality control which can be used to some extent

for evaluation.

SOLUS100 (“Soil Landscapes of the United States 100-meter”) is a recent DSM product from the USDA-NRCS (Nauman

et al., 2024). This contains predicted values, high and low estimates, and prediction intervals for soil properties at the Global-

SoilMap standard depths, at 100 m horizontal resolution (i.e., 1 ha pixels) over the entire conterminous United States (CONUS).395

The maps are available in GeoTIFF format (Nauman, 2024). These can be compared to the Gridded Soil Survey Geographic

Database (gSSURGO) digital product from the NRCS (NRCS Soils, 2022). This was created by digitising the polygons from

traditional soil-landscape survey, with its linked relational database of polygons, map units, components, horizons, and soil

properties. Thus aggregation and segmentation can be compared to a product based on expert judgement and field-based soil

survey, although gSSURGO is also quite heterogeneous in the age and quality of the soil surveys on which it is based, and so400

must be used with caution as a ground truth.

We selected a 570 km2 test area in Wayne County NY, mapped in 1978 on an unrectified airphoto base (Higgins, 1978),

and later digitised by the NRCS and incorporated into gSSURGO. This area has a distinctive pattern of NNW-SSE orientated

drumlins of various sizes and shapes, and inter-drumlin depressions. Some of these developed into peatlands, with drained

areas used for agriculture and undrained areas used as wildlife reserves. The genesis of this soil landscape has been studied for405

more than a century (Menzies et al., 2016).

Figure 24 shows the predicted surface layer clay concentration for the original soil survey, as compiled in gSSURGO, and

for SOLUS. Notice the different legend scales, otherwise the SOLUS map would not clearly show its pattern, since SOLUS

predicts a narrower range of concentrations, as is typical of DSM products. It is obvious by visual inspection that SOLUS misses

much of the fine pattern, and especially that it does not identify most of the organic soils with very low clay concentrations410

(dark blue on the gSSURGO map).

5.1 Aggregation

We aggregated the SOLUS map of surface layer clay concentration with the supercells algorithm. We set the minimum

area parameter minarea to be comparable to MLD at original design scale. The source map in this area was at 1:24k design

scale, so the MLD was set to 2.304 ha. The Optimal Legible Delineation (OLD) is 4 x MLD (Forbes et al., 1982), so here415

9.216 ha, corresponding to nine SOLUS cells. Aggregation complexity is controlled by the number of supercells. This should

be comparable to the number of gSSURGO polygons in this study area. In this way we can evaluate how well the DSM

can match the traditional soil survey. In this area there are 14 949 gSSURGO polygons, with a median area of 2.43 ha,

corresponding to 2 to 3 cells. The mean is area 5.30 ha, because of some large polygons, mainly organic soils, i.e. Histosols in

US Soil Taxonomy (Soil Survey Staff, 1999).420
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Figure 24. Clay concentration % of the 0-5 cm layer, gSSURGO (left), SOLUS 100 m (right). Coördinate Reference System is an Albers

Equal Area for CONUS.

We aggregated with a range of compactness values from 0.2 to 2. Because of the long linear shape of the drumlins, we

expected that the lower compactness would best match the landscape. Indeed, this parameter value produced the map with

the least rounded features, but their orientation did not match the landscape pattern (Figure 25). From this we conclude that

SOLUS in no way represents the actual soil pattern. This same result was obtained with other layers of clay concentration, and

with several other soil properties.425

5.2 Segmentation

SOLUS resolution is 100 m, so that the minimum shift is 10 i.e., 1 000 m = 1 km, corresponding to 1:250k nominal scale.

Thus we did not expect to reproduce the fine pattern, but rather to group these into regions. We segmented with raster stacks

of single properties at all depth slices, and with a raster stack of seven properties (clay, silt, and soil organic carbon weight

concentrations, coarse fragments volume, pH measured at 1:1 in water, CEC, bulk density) at one depth slice. The continuous430

properties were converted to classes, as required by the GeoPAT segmentation algorithm: particle-size separates in units of 4%,

pH in units of 0.2 pH, CEC in units of 10 meq (100 g)−1, bulk density in units of 0.1 kg m−3 , and SOC in units of 0.2% up

to 6% and then in units of 5% to the maximum of 30%.

Figure 26 shows the segmentation based on all depth slices of SOC concentration, units 1000 x %, for three of the slices.

Some segments are well-separated, notably the depressions with swamps and organic soils, as well as sections with different435

intensities of drumlins.

Figure 27 shows the segmentation based on all depth slices of clay %, for three of the slices. The segments are quite large

and do not identify collections of the main landscape elements, i.e., drumlins and depressions.

Similar and even worse results were found with other properties, as well as with an attempt to use all properties at one depth

slice.440
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Figure 25. Supercells of clay concentration % of the 0-5 cm layer from SOLUS 100 m overlaid by the polygon boundaries (in red) from

gSSURGO

Figure 26. Segmentation based on all depth slices of SOC concentration
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Figure 27. Segmentation based on all depth slices of clay concentration

5.3 Clustering

Because of the poor results of segmentation, we do not present the results of clustering for this case study.

5.4 Evaluation

SOLUS100 was able to "speak for itself", but the message was not clear and even misleading. Notably, the attempts to aggregate

and segment based on a representation of the profile resulted in unrealistic maps. In this area the landscape pattern is striking445

and easy to map by conventional methods. SOLUS was unable to approximate the conventional map, let alone improve its

resolution. This is likely because SOLUS lacks locally-important covariates to represent this recently glaciated soil landscape

with its characteristic drumlins.

6 Discussion

The supercells algorithm was able to delineate relatively homogeneous soils, based on all soil properties and layers in450

the BIS-4D example and the SoilGrids SOC example, but failed completely with SOLUS. A limitation of this approach is

that there is no objective way to adjust the compactness and supercell number parameters, other than the expert opinion on

which choice looks most “realistic”. However, the minimum size parameter can be set to match a minimum legible delineation

corresponding to a desired map scale.

The GeoPAT algorithm was able to segment DSM products into objectively-defined areas made up of fixed-size blocks, each455

relatively homogeneous in its pattern internally and relatively isolated from its neighbours. Segmentation was quite successful

on appropriate scales for BIS-4D and the test area and property of SoilGrids v2.0, but much less successful for the test area

of SOLUS100. The class composition of segments, although not their internal spatial pattern, were well-characterised by

normalized Shannon Entropy.

A limitation of the GeoPAT approach is the requirement for relatively large numbers of pixels per grid cell, and the rectan-460

gular shape of the grid cells that are combined into segments. Thus, the segment boundaries can not follow complex natural

boundaries. Also, the landscape segments are at much more general scale than the source map.
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The question remains as to the relation of the supercells or segments with the actual soil landscape at the several scales.

There are two related questions. (1) For aggregation, do the relatively homogeneous (according to the supercells algo-

rithm) groups of pixels correspond to landscape elements? These would correspond to polypedons or consociations. (2) For465

segmentation, do the patterns of pixels within the segment correspond to finer-scale patterns at the design scale of the segmen-

tation? These would correspond to associations or complexes.

In the case of BIS-4D and the detailed traditional Dutch soil survey, the degree to which the aggregation matches the pub-

lished map (Figure 3) is likely sufficient. The success of segmentation was discussed in §3.2. It is not clear which segmentation

scale is the most appropriate.470

In the case of SoilGrids, the “true” soil landscape pattern in the test area is not so clear. When comparing SoilGrids with

the USA, a problem is that the detailed gSSURGO map (NRCS Soils, 2022) has been compiled from multiple survey areas,

mapped over many years, and with imperfect correlation between areas. This is compiled from traditional surveys at design

scales from 1:12’000 to 1:24’000 in most areas, but somewhat coarser in less populated areas in the western USA. The INEGI

map in México is a consistent 1:250’000 national product (Instituto Nacional de Estadística, Geografía e Informática (INEGI),475

2024), which can show a minimum delineation of 250 ha. Figure 28 shows a SOC stock maps of the study area, compiled

from the above-mentioned USA and Mexican sources by the FAO as part of the Global Soil Organic Carbon Map (GSOCmap)

project (FAO, 2018). Version 1.6.1 of this product was downloaded from the FAO’s Global Soil Information System (GloSIS)

(FAO, 2024). The inconsistency in values and pattern between México and the USA is obvious, as are several sharp boundaries

between survey areas in the USA. So it is difficult to evaluate how well SoilGrids identifies supercells or segments.480

In the case of SOLUS, the geomorphology and soil pattern of the test area is well understood and has been mapped in detail.

Of the SOLUS layers only soil organic carbon and coarse fragment volume showed a relation with known patterns in the

test area. Aggregation based on multiple properties completely failed to find landscape units. Segmentation based on multiple

properties failed to find more general units with consistent internal patterns.

7 Conclusions485

The methods presented in this paper are part of an effort to evaluate DSM products based on how well they represent the soil

landscape. The approach taken here complements pattern analysis of the DSM product, which characterises the map without

attempting aggregation or segmentation, as in Rossiter et al. (2022). Both the aggregation and segmentation approaches were

able to allow the DSM product “speak for itself”. Individual predictions in pixels were combined into possible soil-landscape

elements, which could be evaluated statistically and by expert judgment. Both of these approaches require the intervention of490

the analyst to select scales and parameters, often with large differences in resulting patterns. This has the advantage that the

analyst can match desired scales of landscape analysis, and indeed can perform a multi-resolution evaluation. The analysis of

the resulting maps is a significant addition to the commonly-used “point”-based evaluation statistics, which (1) do not evaluate

the full map, (2) even at point support, do not take into account the spatial relation between evaluation points. We hope that
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Figure 28. Global Soil Organic Carbon (GSOC) map (part). Boundary is between México (south) and the USA (north).

Source and legend: FAO (2024).

this will stimulate digital soil mappers to evaluate their own products in this light. This should lead to clearer communication495

with DSM users, so that digital soil maps become more widely accepted and properly used.

Code and data availability. The GeoPAT modules are available at its GitHub repository1. The superpixels R package is available at

CRAN2 and must be installed from within the R environment. The analysis code for this paper is available in a GitLab repository3. The

datasets used in case studies can be obtained from the websites referenced in the text.

Author contributions. DGR conceived of the approach, wrote the code, carried out the test cases, and wrote the initial draft. LP contributed500

advice at every step, especially the concepts and interpretations, and contributed detailed knowledge of SoilGrids.
1https://github.com/Nowosad/geopat2
2https://cran.r-project.org/web/packages/supercells/index.html
3https://git.wur.nl/isric/scientific-publications/Rossiter-2025-Soil_landscapes_from_DSM
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